A container is a closed system with it’s own unique ” weather” inside. It differs from the warehouse in that the variation in temperature is much greater. It is not unusual to have containers wherein temperatures range from freezing to 60-70C during the course of a single voyage.

The central fact is that warm air can hold more moisture than cold air. That means that if warm air is cooled, it becomes more humid. And if it is cooled enough, some of the moisture must rain out – condense. That is exactly the same phenomenon that causes dew in the grass or fog on a cool autumn.

In a container a fast temperature change of 5-10C is often enough to cause problems. Water will condense on the coolest available surface, which is often the container ceiling or walls. From there it may drip down onto the cargo and cause damage – “container rain”. At other times it condenses on the cargo, say on the inside of the pallet wrap, – “cargo sweat”-, which is usually even more damaging.

Even without any condensation, elevated humidity over a period of time is sufficient to cause damage. Many metals will corrode or discolor at a rather modest level of humidity , 60-70%. At higher levels of humidity, 80%-90%, moulds will grow, labels will peel and corrugated boxes will start to soften.

The Relative Humidity (RH) is a percentage measure of how much moisture the air
holds as compared to the maximum mount of moisture air at that temperature can hold. That means that completely dry air has a RH of 0%. The RH can never be more than 100%, or any excess moisture will rain out. There is little danger of damage to anything if the RH is below 50% or so.

The Humidity Changes when the Temperature does

The important thing to realize is that the humidity of the air changes only as a result of the change in temperature. When air cools it becomes more humid, – even though the moisture content in the air remains the same.

The Humidity in a container will go up and down throughout the voyage, as a result of changing temperature only. If the temperature changes rapidly enough there is sure to be moisture trouble, even if the container may be fairly dry by reasonable standards.

In a container, moisture evaporates into the air during periods when the container is warm. The warm dry air can accept a lot of moisture. Or warm moisture containing air enters from the outside through “Container Breathing”. When the container cools down, that air becomes very humid. And it is then the troubles start.

But the temperature doesn’t have to vary in time to create a difference. It is equally bad when different parts of a container are at different temperatures. When warm air moves into a colder part it becomes humid and perhaps even condenses moisture. Tons of moisture can be redistributed within a container during a voyage through such processes. Mysterious patterns of damage may arise, such as mold only in certain parts of the cargo.

Temperature changes in a container may arise because one side of the container is
exposed to the elements and another is not. Or it may arise simply as a result of a great thermal inertia in the cargo as outside temperatures change. It is common that it takes weeks for the temperature to equalize through a densely stuffed cargo.

It should be noted that all the basic processes outlined above are strongly nonlinear. A small difference in conditions may cause a grate difference in outcome. That is why the pattern of damage may seem unpredictable.

Where Does the Moisture in the Container Come From

The moisture in the container:

  • Is in the air when the container doors are closed
  • Is contained in the cargo and packaging and is evaporated throughout the voyage
  • Enters from the outside through so called container breathing.

The amount of air contained in the air at loading depends at the temperature and the
humidity at loading. If loading at cool temperatures the amount is seldom significant, at most a few hundred grams. At loading in the tropics, however, the total amount of moisture could be a Kg or more.

Most cargo and packaging materials can both absorb and evaporate moisture. What
happens depends on the temperature and how humid the surrounding air is. It is common that the cargo will evaporate during one part of the voyage and absorb during a different part.

No container is airtight. Moisture can move both into and out of the container as a result of temperature variations. Unfortunately, common circumstances will lead to a gradual build up of moisture within the container.

It could very well happen that you start with a very dry cargo, but at some later time the cargo has absorbed a lot of moisture which may be released in a very destructive way. If there is a temperature difference within the cargo, very substantial amounts of moisture may be re-distributed within the cargo. The moisture will always move from the warmer to the colder part.

Any absorbers put in the container are of course expected to be part of the solution and not the problem. Alas, that is not so. Unfortunately almost all kinds of absorbers, other than Absorpole and Absorbag, will re-evaporate moisture under some circumstances, usually in connection with a period of elevated temperature some time into the voyage.